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Abstract. The effects of Umklapp scattering on the zero-temperature conductance in one-dimensional
quantum wires are reexamined by taking into account both the screening of external potential and the
non-uniform chemical potential shift due to electron-electron interaction. It is shown that in the case away
from half-filling the conductance is given by the universal value, 2¢2/h, even in the presence of Umklapp
scattering, owing to these renormalization effects of external potential. The conclusion is in accordance
with the recent claim obtained for the system with non-interacting leads being attached to a quantum

wire.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) —
72.15.Nj Collective modes (e.g., in one-dimensional conductors) — 72.10.Fk Scattering by point defects,
dislocations, surfaces, and other imperfections (including Kondo effect)

1 Introduction

The effects of electron-electron interaction on the con-
ductance in one-dimensional (1D) quantum wires have
been extensively studied from both theoretical and exper-
imental points of view. The low-energy properties of 1D
interacting electron systems are described by the
Tomonaga-Luttinger (TL) liquids [1]. It has been known
that the conductance at zero temperature is given by
2¢’K,/h, where K, is the TL liquid parameter which
controls the asymptotic behavior of correlation functions
[2,3]. However, according to the recent experiment, the
observed conductance is not 2K ,/h but 2e?/h, which is
expected for the conductance of 1D non-interacting elec-
tron systems [4]. In order to explain this discrepancy, two
possible scenarios have been proposed. One is that non-
interacting leads attached to a quantum wire are essen-
tial to reproduce the observed conductance 2e2/h [5-7].
The other scenario is that if one takes into account the
screening of external potential due to electron-electron in-
teraction, the multiplicative factor K, in the conductance
may become unity [8-10]. Both of these scenarios give the
nice explanations for the experimentally observed conduc-
tance, if only forward scattering of electron-electron in-
teraction exists. However, in the presence of Umklapp or
impurity scattering which gives rise to momentum dissi-
pation, these scenarios lead to different results [9,11-19].
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In the case that non-interacting leads are attached, the
conductance is still given by the unrenormalized value,
2¢2/h, even in the presence of Umklapp scattering as far
as the electron density is away from half-filling [17,18].
In contrast, if one takes into account only the screening
of external potential due to electron-electron interaction,
the Umklapp scattering gives the non-universal value of
conductance, 2e?y/h, where v is a constant different from
K, [13]. This difference implies that taking into account
only the screening effect due to forward scattering process
is not sufficient for the correct treatment of the voltage
drop. One needs to consider the renomalization of the ex-
ternal potential due to other scattering processes. The the-
oretical treatment of the voltage drop was also discussed
by Egger and Grabert from another point of view based
upon Landauer-type approach [20]. More recently, Kawa-
bata pointed out that corrections to the conductance due
to short-ranged electron-electron interaction may be ab-
sorbed into the renormalization of a chemical potential
[21]. He demonstrated this in the case of backward scat-
tering. By calculating corrections up to the first order in
electron-electron interaction, he obtained the unrenormal-
ized value of the conductance, 2¢2/h. In this paper, we in-
vestigate the renormalization of the chemical potential due
to Umklapp scattering in the case away from half-filling,
which has not been considered in the previous studies. Our
main purpose is to show that we have the unrenormalized
value of the conductance, 2¢%/h, by taking into account
both the screening of external potential due to forward
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scattering and the renormalization of the chemical poten-
tial due to Umklapp scattering [22]. For this purpose, we
need to calculate the second order processes of Umklapp
scattering which give singular contributions. Thus, in con-
trast to the case of backward scattering, we cannot adopt
a simple perturbation approach. We exploit bosonization
and renormalization group method.

The organization of this paper is as follows. In Sec-
tion 2, we define our model and summarize the results
of our previous paper [13], in which only the screening
of external potential due to forward scattering is con-
sidered. In Section 3, we develop perturbative renormal-
ization group argument for the renormalization of the
chemical potential due to Umklapp scattering. Combining
the results in Sections 2 and 3, we show that the conduc-
tance is not renormalized even in the presence of Umk-
lapp scattering in Section 4. In Section 5, we consider the
generalization of our argument to fermion systems with
SU(N) internal symmetry. This generalization is worth-
while to be investigated because of the following reason.
It has been recently claimed by Zotos et al. that all 1D
quantum integrable systems may have the properties of
ideal conductors with zero-resistivity [23] even at finite
temperatures. This assertion has been directly confirmed
by the calculation based upon the Bethe ansatz solutions
[24,25]. In this sense, integrable systems may exhibit
rather special properties for transport coefficients in con-
trast to general non-integrable cases. Since our argu-
ment for the electron model (SU(2) case) is based on the
bosonized effective hamiltonian, i.e. the 1D sine-Gordon
model, which is integrable, we need to show that the un-
renormalized conductance is not the consequence of the
integrability, but a universal property inherent in 1D elec-
tron systems (even with Umklapp interaction). To confirm
this point, we investigate a non-integrable SU(N) fermion
model with Umklapp scattering. In the last section, some
discussions about the applicability of our argument are
given.

2 Screening of the external potential
due to forward scattering

We consider an electron system with forward and Umk-
lapp interactions, and start with the following Hamilto-
nian after linearizing the dispersion around the Fermi
points,

H=ihvp /dxz ] (2)0b (2) — 0] ()0s o () :

+g [ 2 palola)
+ U/;l—i: ei(4kp—2w)wh(m)szR(x)wIL(x)mR(x)_,_h_c' .
(1)

where :: represents the normal ordering, 1, 1,(r) is the an-
nihilation operator for left(right)-moving electrons with
spin o, g (U) is the coupling for forward (Umklapp)
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scattering, and p(z) = pr(z) + pr(z) with pr (g)(z) =
> w;L(R)(m)zbaL(R) (x)/v/2. According to Kawabata,

[8,21] the renormalization of the external potential,
$o(q,w), occurs due to electron-electron interaction. In
the present case, we have two kind of interactions, both
of which may be expected to contribute to the potential
renormalization. The forward scattering screens the ex-
ternal potential and changes the measured voltage. The
Umklapp scattering gives rise to the non-uniform chem-
ical potential shift in the presence of electric field gradi-
ent which contributes to the renormalization of external
fields. The former effect was considered in our previous
paper [13], which is briefly summarized in this section.

The screening effect can be incorporated by calculat-
ing the diagrams for current-current correlation function
which are irreducible with respect to the forward scatter-
ing, ¢g. Using bosonization method, we have the effective
Hamiltonian for the charge degrees of freedom of equa-
tion (1),

H=Hy+ H,,

o= [ da| - @0, ) + 2@ | @

H, %/dxcos(\/S_wd)p(x) + ox),

where o is the high-energy cut-off parameter. Here ¢, is
a boson phase field for the charge degrees of freedom, 11,
is its canonical conjugate field, and § = 4kp — 27 with kp
being the Fermi point. In the following, we will consider
only the case away from half-filling, § # 0.

Since the Umklapp scattering term becomes irrelevant
at the TL liquid fixed point, the leading correction to
the conductance due to the Umklapp term can be esti-
mated using perturbative calculations. The conductance
is given by

. €e‘w
G= ul;lg%) L2w
L/2 L/2 8
x/ dac/ dx’/ dr(T¢,(z,7)p,(z,0))
—L/2 L2 0

X e_i®7—|£1=iw—e- (5)
In order to take into account the renormalization of exter-
nal potential, we should calculate the irreducible diagram
with respect to the forward scattering, g, which is related
to the charge susceptibility x(g,w),

x(q,w)

q2<¢p(q, w)fbp(_% w)>7§“r = %7

(6)

for ¢ ~ 0. Here, (- - -)f is the retarded Green’s function.
We now expand x(¢g,w) in terms of the strength of the
Umklapp scattering U: x(¢,w) = X(g,w)+Ix(¢,w), where
X(q,w) includes only the effect of the forward scattering
whereas dx(q,w) is the correction due to the Umklapp
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term. Then we have

2 w —d.w R _ )Z(‘Lw) 5X(Q7w)
q <¢)P(q7 )d)p( Q7 )>’L’I”l“ 1 % (q,w) (1_%2((]7&}))2

Xo(g, w)\?
=Xo(g, w)+ (m) dx(q, uz):)
7

where xo(¢,w) is the charge susceptibility for non-
interacting electron systems. Evaluating dx(g,w) up to
the second order in U, we have the renormalized conduc-
tance [13],

>0

2
G =20 w2

¢ (®)
with b = K,(e#=4Ke)le —1)/(8 — 8K ). Here I, is deter-
mined by the condition that |[4kr — 27| ~ 1/aelc where o
is a high-energy cutoff [26]. Note again that the formula
(8) is obtained by incorporating the screening effect due to
forward scattering. This result should be modified, if one
further takes into account properly the renormalization of
the chemical potential due to Umklapp scattering, which
will be discussed in the following sections.

3 Renormalization of the chemical potential
due to Umklapp scattering

In this section, we discuss the renormalization of the non-
uniform chemical potential due to the Umklapp scattering
which results in the renormalization of the external elec-
tric fields. We use the perturbative renormalization group
method. The coupling of charge currents to the external
potential &(z,t) is given by

H.p = —\/g / dx®(z,)0,b,(z).

Here, for simplicity and making our argument clear, we
omit for a while the screening effect of external poten-
tial due to the forward scattering, and concentrate on the
renormalization of the chemical potential due to the Umk-
lapp scattering. Both effects are considered in the next
section to obtain the final formula for the conductance.

Up to the first order in @(x,t) and the second order in
U, we obtain the renormalization group equation for the
external potential,

9)

d@(l‘, t) UQKp
¥ (z,t) — 2w 2 Jo(6c)P(z,t)
2
K
+ 2 Uv2 L Jléio‘) B(z, 1), (10)

P

where J,(z) is the Bessel function.
Note that the renormalization equation for the uniform
chemical potential is given by

ds UK, Jy(6c)
P

- = 2 AV
p d+

11
v2 a (11)
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where the quantity ¢ has been introduced in equation (4).
Thus equation (10) is rewritten as,

do(z,t) _ 1ds
di §dl

UK,
v

&(z,t) — 2w Jo(da)P(z,t). (12)

We impose the condition that dd/dl = 0 in order to con-
serve the electron density. Then we have

dd(z,t) 5 UK,
=27

dl v2

Jo(6a)P(z, ). (13)

The current induced by the bare external potential
&y(z,t) at zero temperature is I = (2¢2/h)K,Ady with
APy = Py(+00,t) — Po(—00,t). Thus the conductance is
given by

_ 2¢* K,Ad,
T h AP

G (14)

Using equation (13) and the renormalization equation of
K, [26],

dK, UK}
—t =-2 L Jo(8 1
dl ™ 'Ug JO( O‘)? ( 5)
we have,

dG

Thus the conductance is not renormalized by the Umklapp
scattering for any scaling length at zero temperature. This
remarkable property provides the basis for the following
argument about the universal conductance in the presence
of the Umklapp scattering. To avoid confusions, we wish to
mention again that the formula (16) has been obtained by
omitting the potential-renormalization effect due to for-
ward scattering for simplicity.

4 Universal conductance in the presence
of Umklapp scattering

Now we are ready to show that the conductance is not
renormalized even in the presence of Umklapp scattering
if one incorporates both effects of the screening of external
potential due to forward scattering and the renormaliza-
tion of the chemical potential due to Umklapp scattering.

The averaged value of the current in the static limit is
given by

I O 1 iqx

{(J(z)) = lim dqqx(q, w)Poe
= li d1~( )Do( )“1‘”+2—e25KAqS
= limy | da X(a,w)Po(q,w)e 5 0K, Ao,

Ji(z) + Ja(2), (17)

where we have expanded the charge susceptibility x(g,w)
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in terms of U, and separated the current into two parts:
J1(z), which includes only the effect of the forward scat-
tering, and Jo(z) = (2¢%/h)0K,Ady, the correction due
to the Umklapp scattering. This expansion is justified for
small U since the Umklapp interaction is an irrelevant op-
erator. We also expand the external field in terms of U,

P (z,t) = D(z,t) + 6P(x,t), (18)

where ®(z,t) includes only the screening effect due to the
forward scattering, and 6¥(z,t) is the correction due to
the Umklapp scattering discussed in Section 3.

Then the contribution to the conductance from the
first term of the last line in equation (17) is given by up
to the lowest order in U,

a _Jdadi(x) 2% 2e* -
- A  h hF

AByA(6D)
(A2)?

+0(U?). (19)

Here K o includes only the contribution from forward scat-
tering, and A(6P) = P(+00) — 0P(—00). In order to ob-
tain this expression, we have used the relation xo(q,w)® =
X(g,w)Po [8,13]. The contribution to the conductance
from Ja(z) up to the same order in U is given by,

[ dzJs () 26 0K ,Ab
G2 =~ .

AP h AP (20)

The corrections due to Umklapp scattering, A(d®) and
0K,, are evaluated by using the renormalization group
equation obtained in Section 3,

/dldAd5 =27 /dl
—27T/dl

If we consider the lowest order corrections in U, K, in
the right-hand side of equations (21, 22) is replaced by
K 5, and A® in the right-hand side of equation (21) does
not depend on the scaling parameter [. Then from equa-
tions (19, 20), we have the conductance,

A(5) " Jo(60) A, (21)

(SKP J() 504) (22)

2¢?
h

Therefore we come to the conclusion that the conductance
is not renormalized even in the presence of Umklapp scat-
tering if one takes into account not only the screening
of the external potential but also the renormalization of
the local chemical potential. This conclusion, which may
improve our previous results [13], is in accordance with
the recent studies on the effect of non-interacting leads
attached to quantum wires in the presence of Umklapp
scattering [17,18].

G=G +Gy = (23)

5 Generalization to the SU(N) fermion model

As mentioned in the introduction, the model we consid-
ered in the previous sections, the sine-Gordon model, is
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an integrable system, in which it is known that no true
current decay occurs [23]. Thus one may suspect that the
unrenormalized conductance obtained in the previous sec-
tions might be the consequence of the integrability of the
model. In this section, in order to examine this point, we
consider the non-integrable 1D interacting electron sys-
tems of which the spin degrees of freedom is generalized
to the SU(N) symmetry. In this model, the bosonized form
of the Umklapp interaction which breaks the integrability
is given by [27],

U a 6N
Humklapp = ? /dx(gﬁga gagg exp 167T/N¢)p
+d0x) + h.c., (24)

where ¢ is a matrix of SU(N) Lie group. As seen from
the above interaction, the charge degrees of freedom is
coupled with SU(N) internal degrees of freedom. In the
case away from half-filling § # 0, this term is irrelevant,
and can be treated perturbatively. Following the method
in Section 3, we obtain the scaling equations for external
potential and the Luttinger parameter K,

dd(z,t) UK

g = AT ; Jo(6)(z, 1), (25)
dK, U’K,
R (26)

p

Using these equations, we can repeat the same argument
as done for the SU(2) case, and obtain the unrenormal-
ized value of the conductance, 2e2/h. Thus, our result is
not restricted to integrable systems. Although our argu-
ment is based upon a specific model, we believe that the
result for the unrenormalized conductance in the presence
of Umklapp scattering is a universal property of 1D metal-
lic systems.

6 Discussions

In this paper, we have shown that the conductance takes
universal value, 2¢%/h, in the presence of Umklapp scatter-
ing, by properly taking into account not only the screening
of external potential due to forward scattering of electron-
electron interaction but also the renormalization of chem-
ical potential due to Umklapp scattering. The conclusion
is in accordance with the theoretical result obtained for
the system with non-interacting leads being attached to
a quantum wire, although the mechanism to obtain the
universal value is different between two approaches. Here
we discuss about the condition in which our argument
is applicable. The renormalization of the local chemical
potential stems from the local charge density fluctuation
induced by the external potential. In the derivation of
equation (10), we assumed that the induced charge den-
sity, x.®@(z,t) = (2K,/mv,)®(x,t) is much smaller than
the total charge density n. This is nothing but the con-
dition required for the applicability of linear response
theory. As the electron density approaches half-filling
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n — 1, the charge susceptibility x. diverges [28] like
~ 1/(1 — n). Thus in the vicinity of the Mott tran-
sition, the value of &(z,t) for which the unrenormal-
ized conductance is observed is quite small, &(z,t) <
n/x.. We cannot apply Landauer’s formula unless this
condition is satisfied. Thus although the conductance
is not renormalized for any electron densities away
from half-filling, the range of the applied external po-
tential for which the unrenormalized conductance is
observable becomes smaller, as the electron density
approaches the half-filling. A sufficiently large external po-
tential may excite electrons to the upper-Hubbard band.
In this case, non-linear effects become very important. It
may be an interesting issue to investigate such non-linear
effects which characterize the precursor of the Mott tran-
sition.

One of the authors (S.F.) thanks F. Essler, D. Shelton, and
A M. Tsvelik for illuminating conversation and their hospital-
ity at University of Oxford. This work was partly supported
by a Grant-in-Aid from the Ministry of Education, Science,
Sports and Culture, Japan.

References

1. F.D.M. Haldane, J. Phys. C 14, 2585 (1981); Phys. Rev.
Lett. 47, 1840 (1981).

2. W. Apel, T. M. Rice, Phys. Rev. B 26, 7063 (1982).

3. C.L. Kane, M.P.A. Fisher, Phys. Rev. Lett. 68, 1220
(1992).

4. S. Tarucha, T. Honda, T. Saku, Solid State Commun. 94,
413 (1995).

15.
16.

17.

18.

19.
20.
21.
22.

23.

24.
25.
26.
27.
28.

393

D.L. Maslov, M. Stone, Phys. Rev. B 52, 5539 (1995).
V.V. Ponomarenko, Phys. Rev. B 52, 8666 (1995).

H. Safi, H.J. Schulz, Phys. Rev. B 52, 17040 (1995).

A. Kawabata, J. Phys. Soc. Jpn 65, 30 (1996).

Y. Oreg, A.M. Finkel’stein, Phys. Rev. B 54, 14265 (1996).

. A. Shimizu, J. Phys. Soc. Jpn 65, 1162 (1996).
. D.L. Maslov, Phys. Rev. B 52, 14368 (1995).
. A. Furusaki, N. Nagaosa, Phys. Rev. B 54, 5239 (1996).

S. Fujimoto, N. Kawakami, J. Phys. Soc. Jpn 65, 3700
(1996).

V.V. Ponomarenko, N. Nagaosa, Phys. Rev. Lett. 77, 1714
(1997); preprint, cond-mat/9711167.

A. Gramada, M.E. Raikh, Phys. Rev. B 55, 1661 (1997).
A.A. Odintsov, Y. Tokura, S. Tarucha, Phys. Rev. B 56,
12729 (1997).

M. Mori, M. Ogata, H. Fukuyama, J. Phys. Soc. Jpn 66,
3363 (1997).

O.A. Starykh, D.L. Maslov, Phys. Rev. Lett. 80, 1694
(1998).

I. Safi, Phys. Rev. B 55, 7331 (1997).

R. Egger, H. Grabert, Phys. Rev. Lett. 77, 538 (1996).
A. Kawabata, preprint, cond-mat/9701171.

It is easily seen that the renormalization of the non-
uniform chemical potential due to impurity scattering does
not exist. Thus a periodic impurity potential may give the
non-universal value of the conductance in our framework.
X. Zotos, P. Prelovsek, Phys. Rev. B 53, 983 (1996); X.
Zotos, F. Naef, P. Prelovsek, Phys. Rev. B 55, 11029
(1997).

S. Fujimoto, N. Kawakami, J. Phys. A 31, 465 (1998).
B.N. Narozhny, N. Andrei, preprint, cond-mat/9711100.
T. Giamarchi, Phys. Rev. B 44, 2905 (1991).

1. Affleck, Nucl. Phys. B 305, 582 (1988).

T. Usuki, N. Kawakami, A. Okiji, J. Phys. Soc. Jpn 59,
1357 (1990).



